Monday, July 11, 2011

Programmers Anonymous notes, 1011

Distinguishing between sarcasm and irony is ironic. Expressing an opinion about the distinction is sarcastic.


Claire L  Evans, from Portland Or, writes about (and does art/performance about) science and technology issues. Her sequence of blogs about moon arts strike a chord.



What gestures should a vision system understand? A prime requirement is that gestures should be easily learned by humans, but it is not clear what is most natural or effective. Here's a discussion of future gesture interfaces for the Kinect. It's anybody's guess as to what will work well enough for people. The best way to find out is to try things:




While dropping off Cosmo for a summer camp I had the chance to check out their exhibit of video games, Game On 2.0, at OMSI: I wasn't expecting much, but was very impressed. Not only are the games set up well to be played, there was an impressive range of platforms and hardware, from handheld to pinball. Mixed in was good information about the game industry, game development and some original art. The tacit message was that computer games are not just a bit of pointless fun, but a driver of  the computer industry.
Play your way through the past, present, and future of global gaming. From Pong to Gran Turismo, Game On 2.0 is a hands-on experience of video game history and culture, and includes over 125 playable games, including Mario All Stars, Wii Sports, Gran Turismo, Halo Reach, Pacman, Zelda and Sonic the Hedgehog.

Explore over 40 years of gaming entertainment; from the very first commercial coin-op game to the latest in virtual reality and 3D technology. Game On 2.0 celebrates game design, development, and production including original concept and character art and history’s most influential arcade consoles.

RoboCup 2011 is finishing up today, furthering the goal of:
By mid-21st century, a team of fully autonomous humanoid robot soccer players shall win the soccer game, complying with the official rule of the FIFA, against the winner of the most recent World Cup.
While I think AI will advance enough to achieve this goal, I predict that the battery/power technology will be woefully inadequate to the task for many years, if not decades.  Electric cars have been around for more than 100 years now, and everyone agrees they are a good idea, but you still can't plug in a Prius.

And the best soccer team won't be humanoid, no matter how photogenic; we are just not that cute or functional on the pitch:

I think that the soccer playing premise is good, but I'm more interested in video game playing robots. Games are designed to tweak our interest and exercise our humanity, while soccer is largely a sport for spectators. When will a robot master Pong, PacMan, or World of Warcraft?

I don't know the answer, but this is what will close the gap in embodied intelligence. Below is a first step toward that goal, a three electro-mechanical relay bot that "plays" the Tower of Hanoi faster than a human, on a device designed to use human gestures (taps). While the sequence of moves is not found autonomously, it won't be long before robots will entertain themselves by game play.


In base 24 the first eight powers of five are palindromic (Wikipedia, palindromic numbers in other bases). Why? Is it likely that there is a logical reason for this string of palindromes?:
51 =          5
52 =         11
53 =         55
54 =        121
55 =        5A5
56 =       1331
57 =       5FF5
58 =      14641
5A =     15AA51
5C =    16FLF61


What do robots look like? Often it assumed they will evolve toward some sort of human form, and many are wedged into this bipedal mold. What about real robots, those designed for practical use where there is less anthropomorphic social pressure?

Industrial robots have decades of experience now, and their range of forms has settled down. They have one arm and no legs, and are typically bolted to the floors or on a specialized gantry. Here's one marketed to foundries, the KUKA KR 1000 Titan:

While this is a larger model, its body plan is recognizable in a wide range of industrial bots. Most industrial robots are quite a bit larger than humans, even though they are typically used for human scale products like cars. They don't know their own strength, and don't pay much attention to humans, so photos of them with humans are not common. Here's a similar KUKA bot swinging around a couple humans like so much meat (Wikipedia, Robocoaster):

What about autonomous robots? They have much different design requirements and are still evolving. Often they have a more car-like body plan. After several iterations we now know what the near-future looks like, the most sophisticated semi-autonomous bot ever:
NASA Mars Science Laboratory rover, Curiosity, \during mobility testing on June 3, 2011. The location is inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif.
Preparations are on track for shipping the rover to NASA's Kennedy Space Center in Florida in June and for launch during the period Nov. 25 to Dec. 18, 2011.
JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory mission for the NASA Science Mission Directorate, Washington. This mission will land Curiosity on Mars in August 2012. Researchers will use the tools on the rover to study whether the landing region has had environmental conditions favorable for supporting microbial life and favorable for preserving clues about whether life existed.


No comments:

Post a Comment